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The ground state of the k J  spin glass from a heuristic 
matching algorithm 

Harald Freund and Peter Grassberger 
Physics Department, University of Wuppertal, D-5600 Wuppertal 1, Gauss-Strasse 20, 
Federal Republic of Germany 

Received 22 March 1989 

Abstract We present a heuristic matching algorithm for the generation of ground states of 
the short-range * J  spin glass in two dimensions. It is much faster than previous heuristic 
algorithms. I t  achieves near optimal solutions in time O( N )  in contrast to the best known 
exact algorithm which needs a time of O ( N S ” ) .  From simulations with lattice sizes of up 
to 210 x 210 we confirm a phase transition at p = 0.105 but we cannot confirm a proposed 
second transition near p = 0.15. 

1. Introduction 

During recent decades, combinatorial optimisation problems have been studied in such 
diverse fields as applied mathematics, computer chip layout, job scheduling and 
statistical mechanics [ 11. Usually these problems are divided into polynomial and 
non-polynomial ( N P  hard) problems [ 21, depending on whether exact optimisation 
needs polynomially or  exponentially increasing time. But if one is interested in very 
large systems, this division is no longer useful. Even if an exact algorithm, needing 
computing time of a n  order O( N “ )  ( N  = system size, cy 2 2 )  is known, huge amounts 
of computing time are used for large systems. In  this case it would be more convenient 
to find a heuristic algorithm that reaches near-optimal solutions in a time of O ( N ) ,  
even if they are not strictly optimal. 

Many of the above-mentioned problems can be mapped onto spin glasses [l]. 
Therefore studying, for example, the * J  spin glass and finding its ground-state energy 
could be of great help in other fields as well. The * J  spin glass is described by the 
Hamiltonian: 

where the J,. take on the values - J  with probability p and J with probability 1 - p  if 
i and j are next neighbours, and  zero elsewhere. 

Among the different methods used to find a ground state, the simplest uses local 
improvements. The disadvantage of this method is that one is easily trapped in a local, 
but not global, minimum. To overcome this, one can sample many different starting 
configurations but this leads to excessive computing time. 

The more sophisticated simulated annealing (SA) method is inspired by the slow 
cooling of melts that is used to get good single crystals. The ground-state energies 
attained by such Monte Carlo (MC)  algorithms are much better than with local 
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optimisation methods because at finite T there is always a non-zero probability to 
jump out of a local minimum. Nevertheless, the true ground state(s) can only be 
reached when T is reduced in infinitesimal small steps [3] leading again to an infinite 
amount of C P L  time. Therefore one has to define a cooling schedule that reaches T = 0 
in a finite time. It is clear that the cooling schedule strongly influences the attainable 
ground-state energy [3]. A simple but quite efficient procedure [4-61 is the following?. 
One starts with a 'high' temperature T, simulates for a fixed number of MC steps t and 
then lowers T by a fixed amount AT. These steps are repeated until T = 0 is reached. 
The extrapolation to the exact ground-state energy is obtained by comparing runs with 
different t .  In [ 5 ]  it is argued that the attainable energy per site can be described by 

constant 
(Int)< 

E ( t )  = E"+--- 

with 1 < C < 2. Using the above simple cooling schedule, we verified this logarithmic 
convergence in [6] and found { = 1. For the slowest feasible cooling rate t = 10 000, 
the results for the + J  spin glass in two dimensions with a concentration p = 0.5 of 
antiferromagnetic bonds was E (  t )  = -1.3893 i0 .0004 [6]. The extrapolated ground- 
state energy agreed with that found in [8] by means of a transfer matrix formalism. 
It is Eo = -1.4024 + 0.0012, showing that one has to extrapolate over a range A E ,  = 0.013. 

An advantage of simulated annealing is that it can be coded in a massively parallel 
way even on standard computers. Working on a vector machine even raises the degree 
of parallelity. We achieved 29.1 megaflips for a lattice of 5122 spins on a Cray 2. 

In  the present paper, we studied (1) for different values of p.  For p = 0 the simple 
k ing  ferromagnet is obtained which can be treated analytically as was shown by 
Onsager [9]. For p = 0.5 we have a spin glass with a large number of degenerate ground 
states. From this it follows that a phase transition should occur for a certain value p c  
with 0.0 < pc  < 0.5. In [ 101 it was conjectured that there are indeed two phase transitions 
at p ,  = 0.1 and  p z  = 0.15. Simulated annealing is too slow to test this. Exact minimisation 
can only be carried out with small lattice sizes [ lo ,  111. Thus we tried a different 
heuristic algorithm based on the relation [ 10- 121 with minimal matching problems. 

For this, we have first to review a number of well known concepts. Figure 1 shows 
several elementary plaquettes. Those with an odd number of antiferromagnetic bonds 

1-1- - - -T-T- - - - T  

Figure 1. Part of a greater lattice showing strings joining frustrated plaquettes and thus 
crossing unsaturated bonds.  Frustrated plaquettes are denoted by a star. They have an 
o d d  number of antiferromagnetic bonds (broken lines). 

t For more sophisticated cooling schedules, see [ 7 ] .  
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on their perimeter are called frustrared [13]. Frustration means there is no spin 
configuration that minimises all four bond energies b,, = --J,,s,s,. We call bonds ‘satur- 
ated’ if b,, < O  and unsaturated otherwise. So there is at least one unsaturated bond 
per frustrated plaquette. One can easily verify that in (un)frustrated plaquettes there 
are an  (even) odd number of unsaturated bonds. Drawing lines orthogonal to unsatur- 
ated bonds produces strings joining frustrated plaquettes (see figure 1). It is easily 
seen that the number of frustrated plaquettes is even, if we work on a lattice with 
periodic boundary conditions. 

Obviously, the total energy is minimal if the number of unsaturated bonds is minimal 
or, equivalently, if the total length of all strings is minimal. Thus, we are able to use 
matching theory ( a  part of graph theory) in finding the ground state of the *-J spin glass. 

A graph G =  (V, E )  consists of a set of vertices V (in our case the frustrated 
plaquettes) and a set of edges E connecting two vertices (in our case the possible 
strings between two plaquettes). A perfect matching is a subset M of E such that 
each vertex is connected to exactly one other vertex?. It is possible to assign a weight 
to the matching by giving a weight to each edge. If e E E has the weight @ ( e )  then 
w(M)  = X e c M w ( e )  is the weight of the matching M. If we assign the length of the 
strings as their weight (length in x direction plus length in y direction, i.e. ‘Manhattan 
metric’) then the ground state of the * J  spin glass corresponds to a perfect matching 
of minimal weight. Edmonds [14] found a polynomial algorithm that exactly solves 
this problem in a time t L- N’, with N = L x L the number of vertices ( L  is the linear 
extension of the lattice). Recently Vaidya found an algorithm for the two-dimensional 
matching problem that only needs a time t L- N5’2 [ 151. In [ 161, we gave an algorithm 
that finds near-optimal solutions in a time t =  N and that proved successful in the 
case where the weights assigned to the edges are the Euclidean distances. It is the 
purpose of the present paper to adapt this method to the present case and to present 
the results obtained with it. 

In the following § 2 we describe our algorithm. Section 3 contains our results. In 
the last section we discuss our results and compare them to other findings. 

2. Algorithm 

As seen from Ei 1, the bond configuration is only needed to compute the frustrated 
plaquettes. The spins d o  not have to be considered explicitly at all, if we concentrate 
on unsaturated bonds [17]. Therefore we consider in this section a square lattice of 
plaquettes, an  even number of which are frustrated, and we want to find a perfect 
matching of minimal weight. 

We begin by constructing some perfect matching where all vertices (i.e. frustrated 
plaquettes) are linked pairwise. Then we repeat essentially the following elementary 
step. We select an ‘alternating’ loop of 2 n  vertices ( n  = 2 , 3 , .  . .) consisting of n linked 
edges and n non-linked edges which alternate (see figure 2 ( a ) ) .  Then we compute the 
total length of the linked edges L,,, and the total length of the unlinked edges L,,,. 
If L,,, < L,,, we perform a switch (called ‘flip’ in the following) by replacing linked 
and  unlinked edges (see figure 2( b ) ) .  If L,,, > L,, ,  we d o  not flip and if L,,, = L,,, we 
flip with probability 50%. 

t I f  one  vertex is connected to  three other vertices, the matching can s t i l l  be considered as  perfect, with one 
edge truely connected to the vertex, and  the others passing only accidentally through the vertex. 
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Figure 2. Typical loop with n = 5 (full lines are  linked edges, broken lines are  unlinked 
edges) before 'flipping' ( a )  and after ( b ) .  

An easy way to select random loops is the following: we start with a perfect 
matching, 'break open' one edge and mark one vertex by a flag 'head' (+1) and the 
other by a flag 'tail' (-1). In the simplest version we randomly chose another vertex 
in the neighbourhood of the head for matching it to, mark it by a flag -1, break u p  
virtually the link to its previous mate, mark that by a flag +I  and declare it as the new 
head (see figure 3 ( a ) ) .  This is repeated until a loop is formed. Then the above decision 
whether to flip or  not is made. Regardless of this choice, the vertices forming the loop 
are cleared of their flags. The flags are needed to signal the formation of a loop, and 
to avoid 'illegal' (i.e. not alternating) loops. The head may only be matched to a vertex 
without a flag, or to a vertex having the flag -1 as long as it is not its own actual mate 
(see figure 3 ( b - d ) ) .  

To speed up the algorithm, lists are stored for the M next neighbours, their distances 
and  their matching probabilities (see point (iv) below) for all frustrated plaquettes. 
The choices are only from this list (restricting thereby the set of potentially linked 
edges). The details of the algorithm (or rather class of algorithms) are the following. 

Id)  

I - 

Figure 3. Short walk indicated by full  lines between linked edges, and  by broken lines 
between unlinked edges ( a ) ,  legal loop ( b )  and  illegal loop ( c ) .  A loop with only two 
vertices ( d )  would also be illegal. 
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(i) There are different possibilities to establish the first matching. Each vertex can 
be matched to a randomly chosen other vertex. But it is faster if the vertex is matched 
to one from the above-mentioned list of neighbours. But even when taking only a 
mate from the list, there are different choices possible. One can go through the list 
and take the nearest (or the most distant) that is not yet matched, or one chooses 
randomly from the list. I n  most simulations we took the nearest possible because it 
produces a relative short initial matching, but results with the most distant in the list 
were just as good. 

( i i )  The first pair that is broken can be taken random or it can be the longest link 
of the first matching. We tried both but found no effect. In most simulations we made 
a random choice. 

(iii) The number M of next neighbours is mainly limited by available memory. It 
should be large enough that all edges present in the minimal matching are among the 
pairs of neighbours. Simulations with M = 25 on a lattice of 130 x 130 sites showed 
that, in the final matching, only links to the 15 nearest neighbours are established (see 
figure 4). We made runs with M = 11,13,15 which showed no significant dependence 

on M. So we feel reasonably safe when using M = 13 in most simulations. 
(iv) When looking for a possible new mate in the above-mentioned list, we took 

neighbour k with probability pk : 

pk = A eXp(-aC,dk) (3) 
where dk is the distance to the kth neighbour, Cp=4[p3(1 -p )+p( l  - p ) ' ]  is the 
probability that a single plaquette is frustrated, A is a normalisation factor needed to 
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0 4 8 12 

Neighbour ronk k 
16 

Figure 4. Distribution of neighbour ranks for links in near-optimal configurations (rank 
is defined such that it increases with distance d, and rank between neighbours with same 
distance is attributed randomly). These data are from 10 instances with lattice size 
1302, p = 0.5 after 5 x lo7 walk steps for each instance. Notice that the distribution is cut 
off at k = 25 by the algorithm. Effectively, the distribution is zero for distances d 3 4 and 
for k >  15. 
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make X’pL = 1, and a is a positive free parameter. This ansatz strongly suppresses long 
links and  softens this suppression for small concentrations of frustrated plaquettes; 
otherwise, it is completely arbitrary. To speed up  the simulation, the list of these 
probabilities is stored at the beginning. These probabilities are used for the first trial 
to match a new neighbour. If this trial is unsuccessful (since the chosen neighbour 
would lead to an  illegal loop), we studied two choices for the next trials: 

( a )  we repeatedly choose a neighbour k according to the same probabilities ’ p k  

until an  acceptable k is found; 
(b )  we choose ‘greedily’ the nearest acceptable vertex. 
Large a corresponds to a greedy choice. This can produce bad results because 

short loops are repeated very often. In this case iva will fare better than ivb because 
it increases the chance to take a relatively distant neighbour. 

Small a allows a generous choice so that flipping usually increases the length which 
is a bad result, too. But if we combine this with ivb we have a kind of generous-greedy 
choice that will have comparable good results for a wide range of a. We obtained 
fairly good results with L Y E  [7 .0 . .  .9.0] (see figure 5). Most simulations were done 
with a = 8.2 and method ivb. 

-1.569 

r 
1 

2 -1.571 

+ 

I 

5 -1.573 

- 

-1.575 
4 6 12 10 

I 

8 
a 

Figure 5 .  Comparison of the energies reached with different a for lattice size L = 128, p = 
0.12 and  total loop length (i.e. total number of steps) Y =  lO’C,,. Method ivb was used. 
Similar runs were made  for different p and  show the same tendency. The following figures 
were all with a = 8.2. 

(v) Usually there are a number of neighbours in the list with the same distance. 
Let us say, for example, that neighbours k,k+ 1, .  . . , k’ have the same distance d k .  
When we now use method ivb, neighbour k will be taken in most tries although the 
other neighbours k + 1, .  . . , k‘ should be taken with the same probability. One way to 
avoid this problem would be to modify method ivb such that we select the next trial 
randomly among all neighbours with the same distance. Instead of this, we used a 
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faster method where we ‘rotate’ the neighbours, i.e. we put the chosen neighbour after 
the k’th, and advance all neighbours between by one position. More precisely, we 
used the following two alternatives: 

( a )  we rotate only after a greedy choice; 
( b )  we rotate always, both after a random and after a greedy choice. 
Rotation improved the results. Method vb seems to converge faster although no 

detailed tests were made. 
(vi) When a loop between head and tail is formed (consuming thus the entire walk) 

there are the same possibilities to go on as in point ( i i )  above. We always made a 
random choice. 

(vii) There is the possibility to be trapped for a while when repeating the same 
loop on and  on. Going alternatingly in both directions (head and tail) will decrease 
the chance to be totally trapped. We tried both, two directions showed slighly better 
results. 

(viii) When a loop is formed it is also possible to accept a flip with small (and  
decreasing) probability if it increases the length, thus turning the algorithm into a 
version of simulated annealing. But this did not lead to better numerical results, 
presumably because the way we find loops already enables loops of all lengths. 

Figure 6 shows a typical loop statistic. There the number of loops is plotted against 
the topological length (i.e. the number of linked edges) both for loops not changing 
the matching (i.e. Manhattan) length and for those lowering it. The simulations stopped 
when the sum 2 of the topological loop lengths exceeded a certain predefined value 
(2  is the total number of accepted neighbour choices, independent of whether they 

10 
To po I og i ca I length 

Figure 6. Loop statistic for 10 instances, lattice size 180 x 180, p = 0.5, Y = 10xC,, steps. 
Statistics for A E  = 0 (full  squares) was taken during the last third of the simulation. The 
circles show the number of length decreasing loops (topological length n S 40) when one 
thousandth of the simulation was over; the triangles were taken for 0 . 0 0 1 Y i  loop length < 
0.013 and the diamonds for O.OlY<loop length<Y. 
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led finally to loops which were flipped or not). This value secured that each vertex 
was visited in the average about 1000-6000 times by the random walk. The plot shows 
that most of the length-decreasing loops were detected before each vertex was visited 
approximately 50 times. Furthermore we can see that rather long loops are necessary 
to decrease the matching length. These long loops circumvene clusters of spins with 
various forms and sizes which are flipped en bloc when flipping the loop. 

The statistic for length-preserving loops was taken during the last third of the 
simulation, where we are in states that are only a few excitations above the true ground 
state. We believe thus that it reflects properties of ground states. These properties will 
be studied in detail in 0 3. 

Summarising these results we can see that our algorithm is extremely robust in 
finding near optimal solutions. What remains to be seen is what we actually achieve 
in a time of O ( N ) .  

- 
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3. Results 

Our results for the energy reached (per spin) are shown in figure7. They show two 
things. On the one hand we can see that ( 2 )  can be used to extrapolate to the true 
ground-state energy, with a best value of { = 2.0. This reflects the fact that we employ 

1.41 I 
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a Monte Carlo algorithm, albeit it is not simulated annealing proper [SI. On the other 
hand, we can see that the results are nearly independent of details of the algorithm: 
for lattice size 2102 the procedure for the first matching was different from the other 
lattice sizes, method vb was used, and the list of neighbours contained 16 instead of 
13 entries for each frustrated plaquette. From this plot we extrapolate Eo= 
1.4023 + 0.0015 forp = 0.5 which is in perfect agreement with the best literature estimates 
using completely different algorithms [6,8]. 

As was already mentioned in 9 2, we see that the convergence to the true ground 
state is described by (2) not only for simulated annealing but also for this new algorithm. 
With the SA algorithm of [6] we need several runs with different timescale t to extrapolate 
to the true ground-state energy. On a Cray 2 it took approximately 4600s CPU time 
to simulate 10 lattices of each 512 x 512 spins using six different t (500-16 000). Our 
best result there was Eo(t = 16 000) = 1.3899. In contrast to this, our present algorithm 
was run on a micro-VAXII. Our largest lattice was 2102. To reach the same E ( t )  on 
512* sites it would take only approximately 16 000 s, although the Cray 2 is at least 
300 times as fast as a micro-VAXII. Thus, employing SA on a micro-VAXII would 
have taken approximately 1.4 x lo6 s of CPU time. So we see our algorithm is about 
two orders of magnitude faster than SA although it can not be coded in parallel. The 
best achieved E ( t )  with our algorithm was only 0.11% worse than the extrapolated 
true ground-state energy. Figure 8 shows reached or extrapolated energies Eo plotted 
against C,,. The broken line is the function Eo(C,,) = -1.9147+ 1.0228C,, given in [ll].  
As expected, we can see no hint to a phase transition in this plot. This does in no 
way contradict the presence of two phase transitions at C,, = 0.295 ( p  = 0.1) and at 
C,, ~ 0 . 3 8  ( p  ~ 0 . 1 5 )  found by Barahona et a /  [lo]. 

-1.4 c 04 

t 
4 

-2.0 I I I 1 I I 
0 0.1 0.2 0.3 0.4 0.5 

CP 

Figure 8. Ground-state energies calculated with different methods plotted against C,). The 
dotted line is the function E(,(C,>) =-1.9147+1.0228C,, given in [ I l l .  I t  gives good 
estimates for C,, > 0.315 ( p  > 0.1 1) .  A, [ 6 ] ;  0, SA algorithm of [6] extrapolated to t = cc; 
0, matching algorithm (not extrapolated). 
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Barahona et a1 studied lattices of up to 20 x 20 spins. They computed true ground- 
state configurations and analysed their structure. To achieve this they used essentially 
the algorithm by Edmonds [14]. After finding one ground state they could compute 
clusters of ‘solidary’ spins. Solidary spins are spins that have the same orientation in 
all ground states. They are connected by ‘rigid’ bonds which are either saturated or 
unsaturated in all ground states. 

By inspecting these clusters they found that below pL= 0.15 the solidary spins form 
one percolating cluster that implies long-range order. Above pL so-called ‘fracture 
lines’ appear that break u p  the percolating cluster into smaller pieces, so that long-range 
order vanishes. As there are small clusters of solidary spins that can ‘flip’ easily there 
is no magnetisation left. They call this phase superparamagnetic, ‘super’ because not 
a single spin can flip without changing energy but clusters of solidary spins with 
different sizes and forms. 

In the phase where the percolating cluster exists they find a second phase transition 
that is characterised by ‘magnetic walls’. Usually one employs periodic boundary 
conditions. But for p > p c  i= 0.10, antiperiodic boundary conditions in one direction 
lead sometimes to a ground state with a lower energy. 

So we see there are three different proposed phases for p in the range 0.0-0.5. 
(i) For low concentrations (0.0 < p < p c  = 0.1) we find ferromagnetic ground states. 

They are characterised by solidary spins forming one percolating cluster and spins 
pointing mostly in the same direction. 

(ii) For moderate concentrations (0.1 <p<pL=O.15) one has a phase which is 
‘rigid’ in the sense that large clusters cannot be flipped, but which is not ferromagnetic 
either, since the clusters are kept in random magnetisation. This is the random antiphase 
state. 

(iii) For high concentrations ( p  > 0.15) the percolating cluster is destroyed by 
fracture lines into small clusters of solidary spins. No long-range correlation can 
survive. This is the superparamagnetic phase. 

Barahona er a1 showed that, when a spin glass is simulated with finite temperature 
T, there will be a critical temperature T, only when p is below p i .  A disadvantage of 
their method was that they could only investigate small lattices (linear lattice size 
L S 2 0 ) .  In  contrast to this our algorithm can process large lattices (L=200) in a 
reasonable amount of CPU time. Although we will usually not find a true ground state, 
we in a way can scan properties of states with a small but finite temperature. So we 
should find hints that for p s p ;  there is a percolating cluster of solidary spins. Or to 
express it differently, loops that can be flipped without changing the total matching 
length (in the following called floppy loops) can surround only very small clusters of 
spins that d o  not belong to the percolating cluster. In figures 6 and 9 the full squares 
show the statistics of floppy loops when we are only a few excitations above the ground 
state. For p = 0.5 we see that quite large floppy loops are found. In contrast to this 
we found for small p a distinct cutoff (see figures 9 and 10). For p = 0.08 our algorithm 
detected only loops shorter than n = 10 for a lattice size L =  50, hinting clearly at a 
phase transition with p c >  0.08. Since each floppy loop encircles a cluster whose 
magnetisation is not fixed, this is a transition to the superparamagnetic phase. It seems 
to occur near p = 0.1, but a precise location of the transition point from the loop 
statistics does not seem possible. 

So we turned to some other quantity. As we mentioned above, Barahona et a1 used 
both periodic and antiperiodic boundary conditions. For 0.1 S p  S 0.15, antiperiodic 
boundary conditions did not increase the ground-state energy. In contrast to this, we 
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Figure 9. As figure 6, but for p = 0.08. No  loops with topolgoical length n 2 32 were found. 
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Figure 10. Probability of floppy loops with a topological length n exceeding a certain 
value. Lines are only given to guide the eyes. Symbols plotted on the horizontal axis 
indicate zero probability, i.e. absence of any such loop in the sample. 
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had no way of fixing the boundary conditions as periodic or antiperiodic. They could 
change during the simulation when a loop with topological indexfO was flipped. 
More precisely, by using periodic or antiperiodic boundary conditions, and with a 
modified Manhattan metric: 

(4) 

we actually work on a 2~ torus. On such a torus loops can have trivial topology (loop 
A in figure l l ) ,  they can be homotopic to loops B or C which encircle the torus, or 
they can encircle it several times. Flipping loops of type A corresponds to flipping a 
cluster of spins. Flipping loop B or C corresponds to flipping the spins on one of its 
sides but not on the other. This corresponds to exchanging periodic boundary condi- 
tions by antiperiodic and vice versa. 

dAB = min(lxA - x A  ~ - l y ,  -.~Bl)+min(lyA-.~Bl, L- IyA-y,l) 

/---- 

Figure 11. Loop A has trivial topology, whereas B and C encircle the torus. 

Our algorithm finds planar loops as well as encircling loops. Thus all kinds of 
boundary conditions can be in effect during the simulation (periodic in both directions, 
antiperiodic in both directions or periodic in one and antiperiodic in the other direc- 
tion). How can we find out what kind of boundary condition is realised at a given 
instant? To illustrate our method we use a one-dimensional example that can be 
generalised easily. Think of a one-dimensional *.I spin glass of length L. There will 
be m antiferromagnetic couplings and L - m ferromagnetic ones. If we apply (anti) 
periodic boundary conditions m must be (odd) even if we want to minimise all bond 
energies. Otherwise at least one bond will not be saturated. 

This holds true also in two dimensions. Assume that in a given row there are m y  
antiferromagnetic horizontal bonds and b, unsaturated horizontal bonds. Periodic 
boundary conditions in the x direction are in effect if and only if m, + by is even. The 
crucial observation is that, if 

m y  + b y  even 
m y  + by odd 

is ‘p’ for one row, it has to be so for all other rows too. This is easily shown by building 
up the configuration from a purely ferromagnetic lattice in its ground state by changing 
bonds and flipping spins. Each such change conserves B,. The same rule can be 
formulated for the y direction. So a relatively simple procedure can be written that 
finds out boundary conditions. A matching is characterised by the values of the two 
variables B,, B , ,  where B, can be ‘p’ for periodic or ‘a’ for antiperiodic boundary 
conditions. ‘pp’ now stands for a matching with periodic boundary conditions in x 
and y direction and ‘pa’ for a matching with periodic boundary conditions in x direction 
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Figure 12. Number of lowest energy configurations with antiperiodic boundary conditions 
in at least one direction. Lattice size L = 50, 2 = 3 x IO'C,,. There is a distinct change for 
p -0.105*0.01. The chain line would be the asymptotic curve (for L = m )  in the case of 
a transition at pc  = 0.1. 

and antiperiodic boundary conditions in y direction. For each p we simulated 10 
lattices of size L = 50. In the first matching, all four combinations aa, ap,  pa and p p  
were equally likely, for all values of p .  But after the simulation, the last matching 
showed a clear p dependence. Figure 12 shows that, for low concentrations ( O . O < p S  
O.l), we find periodic boundary conditions in both directions in most cases. For high 
concentration ( p  2 0.12) all four boundary conditions are equally likely again. So we 
locate the phase transition from ferromagnetism to the random antiphase or  paramag- 
netic state at p c  = 0.105 * 0.01, in good agreement with the result of Barahona et al. 

Can the second phase transition at p6 also be confirmed with our data? This phase 
transition is characterised by fracture lines that destroy the percolating cluster of 
solidary spins. Fracture lines correspond to circumvening floppy loops. Unfortunately 
they are strongly suppressed in our algorithm because, to find such a loop, we have 
to go in the same direction very often during the random walk. For a lattice with 
L = 50 we need a loop that has the topological length n = 25 to form a circumvening 
loop. From figure 10, we see that such loops are too rare to give statistically significant 
results. On the other hand, the absence of any structure in figure 10 near p = 0.15 
suggests that there is no second transition, and thus no random antiphase state. 

4. Conclusion 

We have presented an algorithm that is much faster than simulated annealing although 
it cannot be vectorised. It reaches states that are quite near to the true ground states 
and is thus able to scan properties of low lying states. Essentially it flips clusters of 
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spins with various sizes and forms, which is strongly reminiscent of recent cluster 
flipping algorithms by Swendsen, Wang and others [18-211. We could confirm the 
first phase transition from ferromagnetism towards the spin glass state that was proposed 
by Barahona et al [IO], with lattices that in linear dimension are more than twice as 
large. We were not able to verify a second phase transition found by Barahona et a1 
which would imply the existence of a random antiphase state. But we must stress that 
we cannot strictly exclude such a phase either. 

Although our algorithm cannot be used in simulating the 2~ +J spin glass with 
external magnetic field or  the three-dimensional i J  spin glass, we nevertheless think 
it could have wide ranging applications. All that is needed is a problem that can be 
formulated as a minimal or  maximal weighted perfect matching problem. This perfect 
matching does not need Manhattan metric or periodic boundary conditions [I61 and  
we are not restricted to two dimensions. It does not have to have any connection to 
spin glasses, as illustrated by the old interest in minimal matching problems in the 
mathematical literature [ 141. In particular, the relationship between spin glasses and 
matching problems breaks down in more than two dimensions. 

When discussing an  Ising-like model, flipping a loop is equivalent to flipping the 
cluster of spins surrounded by this loop. In our algorithm, the selection of the loops 
is done via a random walk. It is this latter aspect of our method which could be most 
useful in generalisations to other spin models in two dimensions. Take for instance a 
2D Ising spin glass with Gaussian distribution of the couplings. In this case, the 
concept of frustration does not apply, and we cannot make walks on the set of frustrated 
plaquettes, as done in the present paper. But we can select candidates for clusters to 
be flipped in a Monte Carlo simulation (not necessarily of the ground state) by 
performing a random walk on the set of all plaquettes, with steps only between next 
neighbours. Provided that these walks select occasionally large clusters, such an 
algorithm can be much faster than conventional MC algorithms, and at the same time 
simpler than other recently proposed cluster flip algorithms [ 18-21]. 
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